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Abstract

We study how a planner can optimally counter misinformation in a social network under coarse targeting: she

broadcasts the same message to all agents, but chooses their exposure levels. Before messaging begins, the planner

chooses a vector of target weights that determine how much each agent is exposed to her message, in order to

maximize total discounted utility. Optimal targeting depends jointly on the network structure and the distribution

of initial opinions. Counterintuitively, agents with extreme views may sometimes receive less exposure. In stylized

opinion-leader networks, optimal weights align with authority centrality. But centrality alone is also not sufficient:

in symmetric networks, targeting is uniform only when initial opinions are. More generally, optimal weights reflect

persistent local opinion dispersion among subsets of agents, which slows opinion convergence. We illustrate the model

using U.S. Facebook friendship data and climate change opinions: the planner over-targets Texas and under-targets

California, despite their similar centrality—underscoring how local disagreements shape optimal targeting.
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1 Introduction

Combating misinformation in social networks faces structural and institutional constraints. While individuals form
opinions through peer interactions and outside messages, public actors such as health agencies or digital platforms
often cannot tailor messages to individuals. Reputational concerns demand consistent messaging across regions (e.g.,
uniform CDC statements about vaccine efficacy), while privacy regulations like the EU’s General Data Protection
Regulation (GDPR) restrict the use of personal attributes for targeting. Political sensitivities and fears of overreach
further limit interventions (Gorwa, 2019). Even private platforms have begun scaling back fine-grained targeting: Meta
and Google have removed political ad targeting by attributes such as race, religion, or political affiliation due to legal
and reputational risks.1 At the same time, personalized advertising has grown more expensive, with rising costs and
diminishing marginal returns.2 These constraints push institutions and platforms toward coarse targeting—broadcasting
a common message while varying exposure intensity across agents.
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We study a planner who operates under this coarse targeting constraint: she chooses the exposure level each agent
receives by selecting a vector of target weights before broadcasting uniform messages. This constraint captures many
real-world interventions. For example, the CDC allocates more media spend to regions with greater public health risk;
platforms like Twitter and YouTube adjust the visibility of fact-checked content; and push notifications are tuned to the
user engagement patterns (Pennycook et al., 2021). While message content is fixed, target weight—via algorithmic
delivery, regional targeting, or media purchasing—is optimized. The planner maximizes her total discounted payoff and
faces a dynamic trade-off: reduce short-run extremism or accelerate long-run convergence to a desired state.

In this model, a forward-looking planner who broadcasts a message per period and chooses a vector of target weights
b∗ ∈ Rn ex ante, where bi determines agent i’s exposure. Agents update opinions by averaging their neighbors’
opinions, given by the network adjacency matrix A, along with the planner’s broadcast messages weighted by bi. The
planner’s stage payoff is decreasing in the quadratic distance between agent opinions and her agenda, and she chooses
b∗ once to maximize her total discounted payoff. Theoretically, the planner jointly designs and controls the opinion
dynamics: b∗ endogenizes how future opinions evolve in response to a fixed message. This contrasts with continuous
targeting (e.g. Galeotti et al. (2020), Li and Tan (2024) and discrete targeting such as minimum driver set problems
Liu and Barabási (2016). The optimal b∗ solves a fixed-point equation linking itself to all its future effects on agents’
opinions. We show that b∗ varies smoothly with initial opinions and, perhaps counterintuitively, may assign less
weight to agents with more extreme initial opinions. In stylized opinion-leader networks, optimal targeting aligns with
authority centrality—how much agents are listened to by others. Yet centrality alone is not sufficient: optimal weights
also respond to persistent, localized disagreement. For example, when applied to U.S. state-level climate change beliefs,
the model predicts more targeting of Texas and less of California, despite their similar centrality.

We begin with a static benchmark where the planner maximizes her next-period payoff. The vector of optimal target
weights is proportional to the vector of counterfactual opinions; what agents would believe in the absence of any
intervention. Network structure matters less because there is no opportunity for opinions to diffuse.

In the dynamic setting, targeting must account for how opinions interact over time. For any b, the planner’s value
function takes a quadratic form in initial opinions, with coefficients governed by a Riccati matrix that captures the net
future benefit of targeting given optimal messaging. To compute b∗, we exploit the recursive structure of the value
function to derive its gradient with respect to target weights, yielding a nonlinear fixed-point equation that characterizes
the optimal targeting vector. This structure enables a nested fixed-point algorithm that outperforms projected gradient
methods in both speed and scalability in simulations.

Two forces shape optimal targeting: network structure and initial opinions of the agents. In an empty network, where
agents are isolated, targeting mirrors initial opinions: more extreme agents receive more weights. In a fully connected
network, only the average opinion matters, so uniform targeting suffices. Generally, these forces interact in nontrivial
ways.

We first show that the optimal target weights vary continuously with the initial opinions. In symmetric networks with
rank greater than one—where all agents have equal centrality—it is optimal to target agents equally if and only if their
initial opinions are identical. In this case, any initial disagreement disappears in one period, and equal targeting shifts
the average opinion toward the planner’s agenda as quickly as possible. The resulting payoff matches what the planner
would achieve under fully personalized targeting, despite the coarse targeting constraint. Small perturbations to these
initial conditions introduce disagreement, which persists and slows convergence. These dynamics are governed by
the network’s eigenstructure. Agents with extreme views may receive more weight if they are relatively stubborn and
their opinions persist locally. But they may receive less weight if their neighbors follow their extreme opinions and
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propagate disagreement further. While the principal eigenvector determines the most effective direction to steer the
average opinion, persistent local disagreement is shaped by the non-principal eigenvectors. The associated eigenvalues
determine the rate at which such disagreement dissipates. Thus, optimal targeting is not only about steering the average,
but also about reducing persistent local disagreements.

In asymmetric networks, structure plays a more active role in shaping optimal weights. Agents differ in authority
centrality—how much others listen to them—and hub centrality—how much they listen to others (Kleinberg, 1999).
There is no closed-form solution in general, but to isolate these forces, we analyze a stylized opinion-leader network in
which each agent gives the same descending weights to others’ opinions: highest to agent 1, then agent 2, and so on.
In this structure, optimal target weights are independent of initial opinions and exactly aligned with agents’ authority
centrality. Convergence is driven most by agent 1, making him the most valuable target. However, dispersion in other
directions still lowers the planner’s short-run payoff. As a result, the planner assigns positive weight to lower-authority
agents—not to steer the average opinion, but to accelerate the dissipation of disagreement. Even if agent 1 is listened to
with probability one, targeting only him is suboptimal: optimal targeting also reflects the structure and persistence of
local opinion distortions.

To illustrate our findings, we analyze climate change opinions from the Yale Climate Opinion Maps (Howe et al.,
2015), shown in Figure 1, to examine how a planner might counter misinformation in the interstate Facebook friendship
network (Bailey et al., 2018). We find that optimal targeting departs from centrality-based benchmarks, as seen in Figure
2. California, despite its high centrality, is targeted less than expected, while Texas receives substantially more weight
than its centrality. Similarly, Michigan and South Carolina—states with relatively moderate opinions—are targeted well
above what their authority centrality would suggest. In contrast, more extreme states like Utah and Idaho receive less
weight. This pattern reflects a core feature of the model: the planner gains more by targeting moderately opinionated
agents who are well connected to—and can influence—isolated pockets of disagreement. These agents serve as leverage
points for accelerating convergence, even when their centrality is relatively low. A broadly actionable insight is that
moderate-opinion clusters should be prioritized over misinformation hot spots if they serve as key “bridges” in the
network.

Figure 1: A measure of misinformation across in the Facebook network of US states.
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Figure 2: Facebook social network between states, and optimal target weights compared to centrality and opinions.

Related literature

A. Optimal intervention in networks. Galeotti and Goyal (2009) analyze a setting where a single strategic influencer,
knowing only the distribution of agents’ degrees, intervenes in a network. Galeotti et al. (2020) consider a static game
in which a social planner optimally intervenes by changing agents’ private returns to investment, which exhibit strategic
spillovers in a network. Candogan et al. (2022) use a two-block model to examine platform influence and limiting
beliefs, demonstrating how insights from small-network results generalize to larger, dense stochastic block networks.
Our model is closely related to Li and Tan (2024) who study dynamic competition among strategic influencers with
distinct agendas, but the influencers use continuous targeting. It is equivalent to our model where the optimal target
weights are uniform, and she sends potentially different messages to every agent; that is, she can send many signals. In
contrast, we focus on the design of an optimal vector of target weights, but the planner can only broadcast messages; that
is, send a single signal. Bloch and Shabayek (2023) investigate optimal targeting when the planner lacks information on
agents’ specific network positions. Unlike these models, our framework assumes that the planner, despite knowing the
network structure, cannot target individuals directly due to reputational or legal constraints. Several other papers at the
intersection of economics and computer science consider planners with different intervention objectives. For instance,
Gaitonde et al. (2020) consider a nefarious agent making a single perturbation to initial opinions that propagates through
a Friedkin and Johnsen (1990) model of opinion dynamics to induce as much discord as possible.3

B. Control theory. Network-based targeting is often studied through identifying the minimum number of controlled
nodes, or the set of driver nodes, needed to achieve certain outcomes in a network (Liu and Barabási, 2016; Gao
et al., 2020).4 However, these approaches contrast with platform-wide influence models like ours, where the influence

3Among many others, Acemoglu et al. (2024) show how a social media platform owner interested in maximizing engagement tend to design
their algorithms to create more homophilic communication patterns (“filter bubbles”). Mostagir et al. (2022) consider a social learning model where
agents learn about an underlying state of the world from individual observations as well as from exchanging information with each other, focusing on
aggregate measures of vulnerability to misinformation.

4In the vast majority of these papers, it is assumed that there is a single specific target state that is exogenously determined; a reasonable
assumption for many engineering applications. Notable departures from this include a particularly relevant study by Li et al. (2024), who depart from
the assumption of a known target state by presuming that it is fixed but unknown and solving an inverse optimal control problem in a linear quadratic
setting.
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weights are continuous rather than discrete. A notable departure from driver set models is the work of Solimine and
Meyer-Baese (2022), which optimizes interventions at an aggregate level rather than controlling individual nodes.
While some studies incorporate continuous targeting as an intermediate step (see Pasqualetti et al. (2014); Summers
et al. (2015); Klickstein et al. (2017), Gao et al. (2018) and Klickstein and Sorrentino (2023) among others), they
typically aim to drive the network to a specific state under time constraints, a different objective from our planner
maximizing her total discounted payoff. More closely related to us is Lindmark and Altafini (2020) who describes two
centrality measures that quantify the importance of each node as a potential driver node, balancing a node’s potential
influence with the cost of control. In our model, asymmetric networks and the agents’ different centralities also play an
important role. Our planner chooses the optimal target weights, which control all agents with different intensities, with
a focus on economic applications.

Our work is closely related to the literature on structural controllability. This concept was originally introduced by Lin
(1974), and the idea is to establish a controllability condition that is agnostic to the weights in the input matrix. However,
our work separates from this literature by optimizing the weights directly. Wang et al. (2012) discussed perturbations to
the network topology itself that maximize measures of structural controllability, but Baggio et al. (2019) acknowledged
that the input structure design problem has not received much attention in the literature. Some subsequent work by
Baggio and Zampieri (2022); Baggio et al. (2022) has worked to address this problem by minimizing quadratic energy
metrics, and Li (2024) who studies the intersection of structural controllability with optimal control.

C. Network learning and opinion dynamics. We assume agents learn naively and update their opinions according to
the learning rule proposed by DeGroot (1974).5 This assumption allows us to focus on the design of optimal influence
itself. Due to the high cognitive burden of Bayesian learning for individuals, many recent papers explore quasi-Bayesian
learning rules in which agents are boundedly rational.6 However, even quasi-Bayesian learning is still cognitively and
computationally demanding, as shown by Li and Tan (2020, 2021). Furthermore, agents in lab and field experiments
often exhibit very limited cognitive ability.7 Our work can be extended to account for other forms of bounded rational
learning such as stubborn agents.
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