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Abstract. We examine behavior in an experimental collaboration game that incorporates

endogenous network formation. The environment is modeled as a generalization of the

voluntary contributions mechanism. By varying the information structure in a controlled

laboratory experiment, we examine the underlying mechanisms of reciprocity that generate

emergent patterns in linking and contribution decisions. Providing players more detailed

information about the sharing behavior of others drastically increases efficiency, and posi-

tively affects a number of other key outcomes. To understand the driving causes of these

changes in behavior we develop and estimate a structural model for actions and small net-

work panels and identify how social preferences affect behavior. We find that the treatment

reduces altruism but stimulates reciprocity, helping players coordinate to reach mutually

beneficial outcomes. In a set of counterfactual simulations, we show that increasing trust in

the community would encourage higher average contributions at the cost of mildly increased

free-riding. Increasing overall reciprocity greatly increases collaborative behavior when there

is limited information but can backfire in the treatment, suggesting that negative reciprocity

and punishment can reduce efficiency. The largest returns would come from an intervention

that drives players away from negative and toward positive reciprocity.
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1. Introduction

We study a voluntary collaboration game in which players choose how much, and with

whom, to share. In this setting, shared resources generate externalities for other players,

but the player sharing the resources does not derive any immediate or direct benefit from

doing so. Viewing the decisions about who to share with as a process of endogenous network

formation, we estimate a stuctural model on preferences and use it to infer the value of

different social preferences for trust and reciprocity.

Consider, for example, the time allocation problem faced by a researcher involved in

multiple projects with different sets of coauthors. The researcher has a limited amount of

time and concentration power to dedicate towards coauthored projects and her own research

activity. Allocating attention to coauthored projects benefits the coauthors, but effort is

a scarce resource and spreading effective contributions across multiple projects reduces the

impact on each project individually. By creating efficiency gains, this type of collaboration

can play a valuable role in economic systems in which it is embedded. Apart from scientific

collaboration, a number of relevant real-world examples fit into the basic framework of

collaboration with congestion. On the internet, web pages make linking decisions; they are

paid advertising revenue for traffic, and they are indexed by a search engine which favors

well-linked pages, such as Google’s PageRank algorithm (Page et al., 1999). Linking to

another site diverts a fraction traffic and amplifies search appearances for the linked site.

Another example is networks between firms who form links by collaborating on R&D projects

(see, e.g. Dasaratha, 2023), and determine how much intellectual property they will share

with other firms through this process.

A pervasive feature of these collaborative environments, in both digital and analog settings,

is that a player who invests their effort in generating externalities can often choose where

to direct them. This pattern of interaction generates a network whose structure can be

informative of the process that governs its formation and evolution. Understanding how

reputation and information affect the evolutionary behavior of interconnected social systems

can help inform platform designers and policymakers on ways to design digital platforms

that promote efficiency.

While the examples above are distinct from each other in several ways, they each highlight

some key common characteristics of voluntary sharing in collaborative environments. First,

the decision to share naturally entails some individual cost to the sharer. Second, shared

resources are, in many cases, congestible. They congest in the sense that sharing the same

resources across multiple recipients reduces the effective benefit derived by each recipient.

Third, sharing is conventionally associated with altruistic or reciprocal motivations – for

example, webpage linking decisions may be forged reciprocally; firms and coauthors may be
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more inclined to dedicate their time to a collaborative project if they notice that their fellow

researchers are similarly dedicated.

In such settings, trust and reciprocity play a key roles in helping players coordinate to

reach efficient outcomes (Fehr et al., 1997; Fehr and Gächter, 1998). People with social

preferences tend to enjoy helping others who have helped them. By controlling the specific

structure and content of the information a player has about their neighbors’ actions, we aim

to reason about how changes in these social preferences can be identified by the changing

patterns of collaborative behavior.

In order to examine the underlying influences on voluntary resource sharing, we designed

an experiment to study a simple sharing environment that incorporates the three key features

outlined above. In the experiment, subjects were randomly assigned to groups of four players.

Groups interacted with each other for 15 rounds (i.e., without random rematching between

rounds). In each round, players privately and simultaneously made two choices; (i) how

much of their endowment (20 tokens) to share (referred to as their contribution), and (ii)

with whom to share, forming a network. Players retained any endowment not shared. Player

i’s contribution (her shared resources) generated benefits for her selected recipients and for

player i herself; however, the shared resources were congestible, so that each received only

some fraction of a token for each contributed token shared by player i. More specifically,

every contributed token was multiplied by a factor of 1.6, with the resulting proceeds shared

equally between player i and her selected recipients.1 At the end of the round, player i’s

payoff was calculated as the sum of her retained endowment, the return on her own shared

resources, and the incoming benefits derived from others who selected player i as a recipient

of their own shared resources.

Our experiment allows us to examine the impact of the information structure on reciprocal

behavior. In the control, players are given information only about the total inflow of benefits

from others after each round, but cannot identify the source of those benefits. In this

way, direct reciprocity is precluded, although sharing behavior may nevertheless be driven

in part by altruism or generalized reciprocity. In the information treatment, players are

informed about the incoming benefit from each of the other three group members. In the

treatment, they can specifically identify which other group members shared with them,

and how much. This enables direct reciprocity to influence both contribution and network

formation decisions. In each session of the experiment, groups first played 15 rounds of

this collaboration game in the control condition with limited information. Then, they were

informed that they would play another 15 rounds with the same group (albeit with shuffled

IDs). In control sessions, the second part simply repeated the control condition for 15 more

rounds. In the treatment sessions, these rounds included the additional information.

1This specification of the benefits from shared resources is, by design, comparable to the widely adopted
implementation of the marginal per capita return (MPCR) in VCM or linear public goods experiments.
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By virtue of the endogenous linking decisions, our study contributes to the growing litera-

ture on network formation games, and especially to more recent work examining simultaneous

action and link formation decisions. Network formation problems are notoriously difficult

to analyze, but have far-reaching consequences and applications in economics and related

fields alike.2 Fundamentally, the observation of a panel of small networks over time, rather

than that of a single large cross-section, allows us to adopt a more sophisticated and innova-

tive structural approach. These methods build on the recent techniques developed by Badev

(2021) and Mele (2017) for large cross-sectional observations of social and economic networks.

More specifically, panel data allows us to estimate the discrete choice process directly, avoid-

ing the computational issues associated with large-network cross-sectional estimation. As

such, one of our main contributions is methodological in nature – we implement a new ap-

proach (see, e.g., Overgoor et al., 2019; Gupta and Porter, 2022) to estimate the network

formation game as a combination of individual evolutionary discrete choice strategies.

Our other main contributions are more conceptual in nature. The voluntary sharing

environment we study is novel, but it exhibits some similarities with other well-studied

strategic decision settings, including dictator giving, the provision of public goods or club

goods, and public goods games played on networks. As such, our study is closely related

to the literature examining network public goods games (Bramoullé et al., 2007; Elliott and

Golub, 2019; Boosey, 2017), and especially to work that extends the game to incorporate

endogenous linking decisions (Galeotti and Goyal, 2010; Kinateder and Merlino, 2017, 2021).

Importantly, while existing literature has focused on settings in which links describe the

decision to access another player’s provision of the good, our environment captures the

reverse situation – the links formed by each player describe the decision to grant access to

the benefits generated by her own contribution.

Our reduced-form results alone point to striking effects of the information treatment.

We find that when subjects can observe who shares with them, as well as how much they

shared, contributions and the average number of links increase substantially. Fewer nodes are

isolated, facilitating the formation of efficient structure, and contribution profiles are more

balanced (decentralized) across group members. As one might expect, the availability of more

detailed information leads to contribution and linking patterns that exhibit dramatically

higher levels of reciprocal behavior than in the baseline condition.

Building off these stark reduced-form results, we develop and estimate a structural model

that incorporates both generalized reciprocity and direct reciprocity as core behavioral con-

siderations for the participants. Our estimates suggest that in the baseline condition (without

specific information), sharing behavior is driven partly by generalized reciprocity. By con-

trast, when subjects are provided with more specific information, sharing behavior is heavily

2See Chandrasekhar (2016) for a comprehensive introduction to the study of network formation.
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influenced by direct reciprocity, and subjects substitute sharply away from generalized reci-

procity concerns in favor of this more focused form of reciprocity.

The estimates of our structural parameters are robust to the inclusion of several het-

erogeneous individual characteristics, which we construct based on subjects’ responses to a

post-experiment survey. We distill the responses down to three key attributes using a prin-

cipal components analysis, representing trust, overall reciprocity, and positive reciprocity.

Incorporating these heterogeneous characteristics into our estimations, we observe clear and

intuitive effects of heterogeneity on behavior. In the baseline condition, higher scores on

the trust attribute are consistent with trustworthy behavior (stronger effects of generalized

reciprocity), but predict less trusting decisions as subjects tend to be more cautious about

sharing altruistically, perhaps out of mistrust in the notion that others will reciprocate. In

the treatment condition, knowing that others observe the source of incoming benefits allows

subjects with higher trust attributes to be more trusting.

The two principal components of reciprocity—overall reciprocity and positive reciprocity—

also explain much of the variation in behavioral patterns. Overall reciprocity, which captures

both a taste for positive and negative reciprocity, has a nuanced effect in the two conditions.

In the baseline, subjects with a higher overall reciprocity attribute are more altruistic and

exhibit a stronger preference for generalized reciprocity. In the treatment condition, they

shift more weight towards direct reciprocity, as expected, but also exhibit less altruism and

less concern for generalized reciprocity. One interpretation for these differences is that in the

treatment condition, the additional information about sharing decisions of others facilitates

negative reciprocity (punishment of those who do not share) more than it enhances positive

reciprocity.

Subjects with higher scores on the positive reciprocity attribute are also more altruistic

in the baseline condition. However, in contrast with our results for the overall reciprocity

attribute, in the treatment condition, they share generously with the entire group in hopes

of stimulating the reciprocity of others, rather than resorting to punishment out of negative

reciprocity.

Finally, we use our structural framework to conduct three counterfactual simulations, each

examining the effects of a uniform increase in one of the three principal attributes—trust,

overall reciprocity, and positive reciprocity. Consistent with our estimates for the model

with individual heterogeneity, an increase in the trust attribute improves key outcomes in

the information treatment, but has a mild, negative impact on the baseline condition. Overall

reciprocity improves outcomes in the baseline condition, but can backfire substantially due

to negative reciprocity in the treatment condition. However, a uniform increase in subjects’

positive reciprocity attribute has a substantial positive effect on all key outcomes in both

the treatment and baseline conditions.
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Our study naturally contributes to three important and active bodies of literature in eco-

nomics. We briefly review these connections—to network public goods games, to structural

estimation of network formation data, and to social preferences for trust and reciprocity—in

the remainder of this section.

1.1. Network provision of public goods. There has been prior work examining both the

extension of public goods to static (exogenous) networks, and the provision of public goods

on endogenous networks. In particular, Bramoullé et al. (2007) launched research into this

environment, by showing that given a network shape, specialized Nash equilibria (in which a

small subset of players provide effort, and those connected to them free-ride) tend to be not

only stable but also the most efficient in terms of overall welfare. Further, they find that, in

an environment with agent heterogeneity, these specialized equilibria are often unique. This

is especially relevant since, in our endogenous network environment, an agent’s marginal cost

of effort is dependent on their position in the network, and in particular how many others

they choose to share with.

Elliott and Golub (2019) characterize outcomes in public goods games on exogenous net-

works by the spectrum of a matrix called the benefits matrix, in which each entry gives the

marginal rate of substitution between decreasing own contribution and increased benefits

from a neighbor in a fixed network. Their results tie the existence of Pareto-efficient out-

comes to the spectral radius of the benefits matrix, and characterize the Lindahl outcomes

as those with effort proportional to each individual’s eigenvector centrality in the graph de-

scribed by the benefits matrix. Many of their results rely on the connectedness of the benefit

graph, which is not guaranteed in random graphs. In the case of endogenous formation this

assumption may not be satisfied, rendering spectral methods difficult to implement outside

of particular special cases involving links that are fully independent (e.g. Dasaratha, 2020;

Parise and Ozdaglar, 2023).

Finally, in the exogenous/fixed network case, Boosey (2017) uses data from a laboratory

experiment to examine the mechanisms for cooperation in a repeated network public goods

game. Experimental results showed a significant portion of subjects playing strategies of

conditional cooperation, in which subjects play strategies which react strongly to the behav-

ior of their neighbors in previous rounds. We will incorporate this phenomenon into our

structural model, by placing strategies on an evolutionary spectrum from reactionary to pre-

dictive. When playing a purely reactive strategy under bounded rationality, simultaneous

play may not converge to a stage-game equilibrium (Alós-Ferrer and Netzer, 2010; Hommes

and Ochea, 2012).

Prior extensions of public goods provision to environments with endogenous linking in-

clude Galeotti and Goyal (2010), which furthers the specialization result of Bramoullé et al.
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(2007). These papers emphasize the prevalence of core-periphery architectures as equilib-

rium networks, but in a setting where players choose incoming, rather than outgoing links.

Kinateder and Merlino (2017) expand on this result, showing how heterogeneity in costs and

benefits to effort in such an environment generates equilibrium networks which take the form

of a tiered multipartite graph. In the heterogeneous case, individuals with comparative ad-

vantage in production costs bear most of the brunt of contribution, while peripheral players,

corresponding to those with higher valuations of the good, pay the linking costs associated

with linking to the core (or inner levels of the multipartite network).

In another relevant study by Rand et al. (2011), the authors conducted an experiment to

gauge the effects of endogenous networks on cooperation in a repeated prisoner’s dilemma.

By varying the opportunity for network updates, they showed that subjects are able to take

advantage of their ability to change social ties in order to refine their neighborhoods and

increase efficiency. Our results will show that, while the endogeneity of the network itself

does allow for this fine-tuning of the social neighborhood, the dynamics of the network alone

are not sufficient to support long-term efficient outcomes. Instead, a platform that aims to

nudge players toward efficient social structure should take advantage of its ability to shape

and distribute information to its users.

Our model departs from the existing literature on public goods in endogenous networks in

a number of ways. Primarily, we model a situation in which individuals choose others with

whom they would like to share the externalities generated by their resources. This is the

reverse of the situations studied in the previous literature on public goods and sharing on

endogenous networks (e.g. Galeotti and Goyal, 2010; Kinateder and Merlino, 2017; Brown,

2024), in that individuals choose the outgoing direction of their externalities, rather than the

incoming direction of others’ externalities. The cost of linking in this study’s environment is

explicitly tied to the effort or contribution level and can be flexibly specified to represent pure

or impure (congestive) externalities. Also in this voluntary sharing environment, there is a

unique stage-game Nash equilibrium of no contributions and no linking. This is, however, in

stark contrast to what we actually observe in the laboratory implementation, and provides

a rich environment to identify and analyze the structure of social preferences.

Hiller (2022) presents a similar model of network formation with a continuous effort choice

and where effort levels are strategic complements. In their paper, while there are conges-

tion costs associated with linking highly, these congestion costs are framed as fixed costs

associated with additional links rather than as an increased marginal cost of effort. In our

setting, actions are perfect substitutes and the only complementarities among players’ ac-

tions are those created by their preferences for reciprocity. Finally, Dasaratha (2023) also

derives theoretical results for a similar model of collaboration with a specific application to

collaborative innovation in industrial networks.
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1.2. Structural estimation from network data. In addition to the novelty of the sharing

environment, we also contribute to the growing literature on estimation in network formation

games; a problem which is notoriously difficult to analyze, but with important applications

(Chandrasekhar, 2016). Thus far, the literature has focused predominantly on preference

estimation from large-network cross-sectional data. This is not without reason—panel data

consisting of repeated observations from small networks over time is rare and difficult to

find in practice. By collecting experimental data, however, we can carefully control group

size and monitor progress over time; generating a panel of networks from which estimation

is particularly tractable and relies on fewer assumptions. More specifically, by observing a

panel of small networks over time, rather than that of a single large cross-section, we are

able to estimate the discrete choice process directly, reducing the set of computational issues

typically encountered in large-network cross-sectional estimation. Estimation of a network

formation game as a combination of individual evolutionary discrete choice strategies is a

new approach, examined only very recently by Overgoor et al. (2019) and Gupta and Porter

(2022).

Cross-sectional network formation estimators rely on assumptions about the meeting pro-

cess and dynamics that guarantee convergence to a stochastically stable stationary distri-

bution, also called a Quantal Response Equilibrium (QRE). While the QRE (McKelvey

and Palfrey, 1995, 1998) is a fixed point stationary distribution of the logit-response (logit

best-reply) dynamics, in the case of simultaneous revision opportunities this fixed point is

potentially unstable. This means that play may instead exhibit a Hopf bifurcation and

converge to a limit cycle or stable orbit, rather than to the fixed point QRE distribution

(Alós-Ferrer and Netzer, 2010). Estimating the individual strategies, however, rather than

imposing stability and estimating the QRE, allows us to comment on the convergence of

the calibrated system, as well as to draw from the steady-state distribution under arbitrary

specifications of the revision opportunity (that is, since we estimate the utility parameters

directly). This means that we can simulate draws of the steady-state distribution for large

networks under sequential-move individual revisions, using the methods of Badev (2021)—

the first paper to examine identification in discrete-choice games taking place on endogenous

networks—in which agents choose both a set of links and an action or investment level. The

method used is closely related to the one used by Mele (2017) to estimate structural param-

eters in such a setting, but differs by leveraging panel structure to avoid the assumption that

the network has already converged to its steady-state distribution after sufficient iterations

of an individual revision process.

1.3. Social preferences for trust and reciprocity. There is a large literature in behav-

ioral and experimental economics that points toward the importance of various behavioral

traits and heterogeneous characteristics of trust and reciprocity in sharing behavior. A



STRATEGIC FORMATION OF COLLABORATIVE NETWORKS 9

large series of studies including Fehr et al. (1997); Fehr and Gächter (1998, 2000); Camerer

(2003); Cox (2004) have leveraged experimental evidence to highlight the use of trust and

reciprocity as devices for contract enforcement and for driving cooperation in markets and

sharing games. Throughout these works is emphasized that reciprocity manifests not only

positively, but can also be used to characterize punishment behavior. While trust and reci-

procity in these settings often drive efficiency gains, we show through counterfactuals that

which characteristics matter the most is highly context dependent; both trust and reciprocity

can backfire as tools to promote efficiency, depending on the information structure.

This result agrees with some more recent work examining the role of these characteristics

in supporting positive market outcomes. For example, Choi and Storr (2022) finds evi-

dence suggesting that providing reputation systems in experimental markets interacts with

preferences primarily by giving participants more information about whom not to trust. Sub-

sequent work by Solimine and Isaac (2023) supported this result and further emphasized the

role of the information in determining the effectiveness of trust in promoting positive market

outcomes. Our counterfactual findings involving trust agree with these findings; through the

way that trust interacts with preferences for reciprocity and altruism, promoting trust in

the community dramatically improves outcomes when subjects are provided with detailed

information about others’ behavior. When information is more limited, however, introducing

higher levels of trust increases trustworthy behavior by some but may backfire by allowing

others to take advantage of this change.

These results also agree with other experimental work that has specifically focused on the

role of trust in experimental sharing environments. In particular, Glaeser et al. (2000) found

that survey questions about trust (similar to the questions we used to measure trust) are

effective at predicting trustworthy behavior but less so at predicting trusting behavior. The

distinction between trusting and trustworthy behavior is mirrored in Anderson et al. (2004),

who found that certain measures of trust are negatively associated with sharing in public

goods experiments.

Studies that focus specifically on reciprocity have found similar results. Fehr and Gächter

(2000) explains that “[reciprocity] means that in response to friendly actions, people are

frequently much nicer and much more cooperative than predicted by the self-interest model;

conversely, in response to hostile actions they are frequently much more nasty and even

brutal.” Indeed, reciprocity is not always positive and evidence from the intersection of

neuroscience and economics (Fehr et al., 2005) agrees that reciprocity can really be broken

down into two pieces—rewards from mutual cooperation and a taste for punishment of

unfair behavior. Through a factor analysis of survey responses, we break reciprocity into

these two components; one that measures “overall reciprocity” and positively weights both

types, and one component that distinguishes between positive and negative reciprocity. We
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find that while increasing trust can mildly increase free-riding in the absence of information,

and promoting overall reciprocity can backfire in the presence of information by stimulating

punishment. However, an intervention that is specifically targeted at moving players away

from punishment and instead focuses on rewarding mutual cooperation can be effective at

promoting collaboration in both information environments.

1.4. Outline of the paper. In Section 2, we lay out a simple theoretical framework for

the collaborative sharing environment. Section 3 describes the design and procedures for the

laboratory experiment testing the effects of different information structure on collaboration

patterns. We present and discuss the reduced-form results of the experiment in Section 4.

Then, in Section 5 we develop and estimate a structural empirical framework to analyze

social preferences using our experimental data, and discuss the results of the estimation and

the goodness of fit. This section also presents the three counterfactual simulations designed

to measure the value of social preferences for trust and reciprocity. Section 6 concludes.

2. Conceptual Framework

We represent player decisions in a single period by directed networks with implicit self-

links, coupled with a vector of actions. Consider a set of players (agents) N = {1 . . . n}. An

individual agent in this set is denoted as i. Players have a resource constraint of ωi units,

and simultaneously choose a contribution level ci from the interval [0, ωi]. Thus (ωi− ci) are

kept at no cost, and used to produce one unit of value for player i.

In addition to choosing a contribution level, players choose a subset Ni of the other players,

with whom they would like to split the production cost and benefits. The cost of contribution

and the magnitude of externalities are flexibly specified by a Marginal Per Capita Return

(MPCR) function mi(Ni), which maps the player’s chosen neighborhood to a cost-externality

structure. In this way, the marginal cost of contributing is (1−mi(Ni)). For example, in the

case of homogeneity in costs and congestive externalities, which will be a focal point in this

study, we could set mi(Ni) = m(Ni) = 1.6
|Ni| for |Ni| > 0. Without loss of generality, we fix

mi(∅) = 1. Because we are primarily interested in examining behavior in situations where

sharing is not apparently rational under standard, self-interested preferences, we operate

under the following assumption:

Assumption 1. mi(Ni) = 1 for the empty neighborhood Ni = ∅, and mi(Ni) < 1 for all

nonempty neighborhoods Ni 6= ∅.

This assumption guarantees that players cannot generate efficiency gains without sharing

with another player. The outcome of the game in any round can be summarized by an

n × n adjacency matrix A, with the elements Aij = 1 if player j shares with player i, and

Aij = 0 otherwise. Since the benefits of investment are divided between the contributor
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and their neighborhood, we will fix Aii = 1. We will denote Ai as the ith column of A with

the ith element removed. Thus Ai is an (n− 1)-vector from {0, 1}(n−1) that contains all the

information of the neighborhood Ni of a node i. In addition, we collect the contributions ci

into a single vector c. By slight abuse of notation, we will overload the marginal per-capita

return function mi(·) to accept arguments in the form Ai, with mi(Ai) , mi(
∑n−1

j=1 (Ai)j) =

mi(|Ni|).
Then we can write players’ concrete (observable) monetary payoffs in the following form:

(1) πi(A, c) = πi(Ai, ci;A−i, c−i) =

(
n∑
j=1

Aijcjmj (Aj)

)
− ci

Importantly, the summation includes j = i because i shares in the benefits of their own

investment, although in our cases of interest, they cannot earn positive net return on their

own contribution. Incentives can be decomposed into a combination of effort cost and ex-

ternalities from others’ contributions. That is, we can write πi as:

(2) πi(A, c) = (mi(Ai)− 1)ci + κi(A−i, c−i)

where κi(A−i, c−i) =
∑n

j=1,j 6=iAijcjmj(Aj) models pure externalities, which do not affect the

decision problem of agent i on the margin, since they cannot be controlled. It is straightfor-

ward to show, by backward induction (and using Assumption 1), that the following propo-

sition holds:

Proposition 1. The unique Nash equilibrium of the sharing game (under Assumption 1) is

ci = 0 and Ni = ∅.

Proof. Since κ(A−i, c−i) is independent of both ci and Ai, this term is dropped from the

marginal decision problem when taking first order conditions. We have:

(3)
∂πi
∂ci

= mi(Ai)− 1 < 0

by Assumption 1. Thus in the stage game, the optimal contribution for any linking pattern

is ci = 0 for all i. �

The free-riding hypothesis is a prominently studied feature of the voluntary contributions

mechanism. Robust evidence from both the lab and field, however, shows that while this

is the unique equilibrium, realistic play very rarely agrees with this theoretical result of full

free-riding (Isaac and Walker, 1988; Fisher et al., 1995).

Explanations for the failure of the free-riding hypothesis typically fall into two categories—

bounded rationality and behavioral or social preferences. Bounded rationality models assert

that players make errors in their computation of the optimal strategy. Social preferences

models, on the other hand, aim to explain systematic deviations by asserting that the strate-

gies are, in fact, rational and optimal when considering other non-monetary concerns of the
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players—such as preference for reciprocity or fairness concerns—which bias actions toward

prosocial behavior. We describe the mean utility as allowing flexibly specified social prefer-

ences:

(4) ui(A, c|θ) = θ1πi(A, c) + βi(A, c|θ)

where βi is a general function specifying the social preferences. Since the externality term κ

is entirely independent of the action choice of player i in period t, we can aid computation

by truncating utility to form individual potentials :

(5) φi(A, c|θ) = θ1 (πi(A, c)− κi(A−i, c−i)) + βi(A, c|θ)

An effective alternative solution concept should incorporate behavioral preferences, taking θ,

which is a vector of parameters, as given. We present the following stability concept referred

to as behavioral Nash stability:

Definition 1. A state of the network and contribution profiles is behaviorally Nash stable if

the following conditions hold for all players i:

(1) φi(Ai, ci|A−i, c−i, θ) ≥ φi(A
′
i, ci|A−i, c−i, θ) ∀A′i ∈ {0, 1}n−1

(2) One of the following:

• ∂
∂ci
βi(A, c|θ) = θ1(1−mi(Ai))

• ci = ωi and
∂
∂ci
φi(A, c|θ) > 0

• ci = 0 and ∂
∂ci
φi(A, c|θ) < 0

This equilibrium concept is similar to those used in prior literature on games on endogenous

networks (Golub and Sadler, 2021) and, in particular, the notion of “k-stability” introduced

by Badev (2021). Since players can simultaneously and unilaterally update any subset of

their links, it is more restrictive than the classical notion of “pairwise stability” (Jackson and

Wolinsky, 1996). The conditions in Definition 1 are straightforward from a game theoretic

perspective. Condition 1 guarantees that no player could unilaterally gain by changing their

link strategy. Condition 2 stipulates that the contribution profile must be a Nash equilibrium

of the game induced by the behavioral preferences and the network A.

It is also straightforward to characterize what is meant by an efficient outcome. When

discussing efficiency, we refer only to the direct monetary outcomes of gameplay.

Definition 2. An outcome (A, c) is efficient if
∑n

i=1 πi(A, c) ≥
∑n

i=1 πi(A
′, c′) for all (A′, c′) ∈

A× C

In other words, an outcome is efficient if it generates the maximum possible monetary

gains for the players. Finally, consider the following classification of congestion effects.

Definition 3. The decision setting is called



STRATEGIC FORMATION OF COLLABORATIVE NETWORKS 13

• Purely congestive if mi(|Ni|) = k
|Ni|+1

for |Ni| > 0 and k ∈ R with 1 < k < 2

• Subcongestive if mi(|Ni|) = k(|Ni|)
|Ni|+1

for |Ni| > 0 and k : Zn \ {0} −→ R is a decreasing

function with 1 < k(1) < 2

• Supercongestive if mi(|Ni|) = k(|Ni|)
|Ni|+1

for |Ni| > 0 and k : Zn \ {0} −→ R is an

increasing function with 1 < k(m) < m for all m ∈ Zn \ {0}

This characterization is inspired by the literature on group size effects in voluntary contri-

butions environments (e.g. Isaac and Walker, 1988). Pure congestion describes a situation

in which players generate fixed efficiency gains by sharing, and gains from their investment

are divided between the sharing player and their neighbors of choice. Subcongestivity and

supercongestivity refer to settings in which the marginal per-capita return decreases faster

or slower with the addition of a link than the purely congestive return. Supercongestivity

also contains an interesting special case, which might be termed anticongestive, in which the

good exhibits a specific type of “network effect” – that is, sharing becomes more effective as

the group size increases.

This special case lends itself to a convenient characterization of efficient structure, based on

how a player’s MPCR scales with their out-degree. That is, the efficient outcome depends

on the curvature of the MPCR function. It transitions between these phases when the

game is purely congestive, at the boundary between subcongestivity and supercongestivity.

Along this boundary, any network in which every player is participating can support efficient

outcomes.

Proposition 2. A network is efficient in a:

• Purely congestive game if and only if |Ni| ≥ 1 and ci = ωi for all players i.

• Subcongestive game if and only if |Ni| = 1 and ci = ωi for all players i.

• Supercongestive game if and only if |Ni| = n and ci = ωi for all players i.

Proof. In a purely congestive setting, efficiency gains are characterized by the multiplicative

constant k. More specifically, since each player’s contribution is multiplied by k and divided

equally among themselves and their neighborhood, we have

(6)
n∑
i=1

πi(A, c) =
n∑
i=1

(
k

|Ni|+ 1
ci +

n∑
j=1

Aji
k

|Nj|+ 1
cj

)
=

n∑
i=1

kci = k

n∑
i=1

ci,

as long as each player forms at least one link. This efficiency is linear and strictly increasing

in ci for all i, because the definition of pure congestion prescribes k > 1. Therefore the

sum of all monetary payoffs is strictly increasing in contributions, meaning that an efficient

configuration must be characterized by full contribution.

When the setting is sub- or super-congestive,
∑n

i=1 πi(A, c) =
∑n

i=1 k(|Ni|)ci. Since both

k(·) and ci are restricted to be positive, the function is linear and increasing in both terms.
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Thus, efficiency will prescribe that the player choose the network that generates the largest

value of k(·). If k(·) is monotone, this means choosing either the smallest (if the game is

subcongestive) or largest (if the game is supercongestive) possible number of links. Finally,

Assumption 1 guarantees that k(0) = 1 (and thus that m(0) = m(∅) = 1. Since k(·) > 1

for nonzero arguments in either subcongestive or supercongestive games, any fully efficient

structure in these settings can never include an isolated node. �

For the experiment, we turn our focus to the purely congestive case, using the number of

free-riders in a group to describe an efficient structure.

3. Experimental Design

In this section, we describe the design and procedures of the laboratory experiment in

greater detail. The experiment was conducted using undergraduate students in the XS/FS

Experimental Social Sciences Laboratory at the Florida State University. We collected data

from a total of 184 subjects across eight sessions. Subjects were recruited using ORSEE

(Greiner, 2015), and played a computerized version of the game programmed using zTree

(Fischbacher, 2007). Instructions used in the experiment, including screenshots of the deci-

sion screens, are contained in Appendix A.

Subjects played a repeated version of a purely congestive resource sharing game, which

consisted of a fixed group size of n = 4, and a homogenous cost/externality structure defined

by an MPCR function of mi(Ni) = m(Ni) = 1.6
|Ni| . Subjects were informed at the beginning

of the session that there would be two parts to the experiment, but were not informed about

any details of the second part until the first part was completed. Each subject in a group was

assigned a unique ID (1–4). In the first part, which consisted of 15 rounds, no information

was shown to subjects regarding the individual decisions made by others in their group.

Instead, subjects were simply shown their own payoff between rounds. At the end of round

15, subjects were redirected to a waiting screen, at which point the instructions for the

second part were read.

The treatment variation was implemented in the second part. In three baseline sessions,

consisting of a total of 72 subjects in 18 groups, subjects were told that the second part of

the experiment would be exactly the same as the first part, except that subject IDs would be

randomly reassigned. In five treatment sessions, consisting of 112 subjects across 28 groups,

subjects were also told that they would play the game for another 15 rounds. However, in

addition to reassigning ID’s, subjects were also told that they would be shown how much

benefit they received in the previous round from each other subject in their group. Although

providing subjects with information about the past behavior of others in their group does not

change the unique Nash equilibrium, this information treatment facilitates direct reciprocity

where the baseline sessions do not. After the two main parts of the experiment were finished,
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subjects completed a series of questionnaires designed to elicit behavioral characteristics.

Questions from this section are shown in Appendix B. Sessions lasted no longer than an

hour. At the end of the session, subjects were paid privately by check, earning an average

of $16.69, including a $10 show-up fee.

While providing subjects information about the past behavior of others in their group does

not change the unique Nash equilibrium, we expect that it will have a nontrivial impact on

efficiency and performance in the market. We estimate the effects of the treatment on a

number of outcome measures, and use structural methods to investigate the root causes of

these changes in behavior.

4. Reduced-Form Results

In this section, we highlight several aggregate, reduced-form results showing the treatment

effects of information provision on key outcomes of interest. The reduced-form estimates are

presented in Table 1. Moreover, Figure 1 illustrates the evolution of the mean level (for each

key outcome) across experimental periods, with bars representing standard errors clustered at

the group level. All estimations highlight a strong impact of the information treatment on key

outcomes. For computational convenience, in each estimation, we normalize contributions

to lie in the interval between 0 and 1.

4.1. Contributions and links. A natural question is how contributions and average degree

(number of outgoing links) are impacted by the information treatment. The dynamics of

these variables can be found in Figures 1a and 1b along with corresponding estimation results

in columns (1) and (2) in Table 1. We find that the treatment substantially increases both

contributions and linking. Contributions still show a tendency to decrease over time, and

the rate of this decay is not significantly impacted by the treatment. Links, on the other

hand, exhibit an additional differential dynamic. Although there is a strong initial boost

from the treatment intervention, decay in the number of links actually appears to accelerate

mildly relative to groups in the baseline sessions.

Result 1. Contributions and average degree (number of links) are both significantly higher

in the treatment condition than in the baseline condition.

4.2. Efficient Structure. The estimation in column (3) of Table 1 shows the effects of the

treatment on subjects’ ability to coordinate on efficient structure. By efficient structure, we

refer to a network topology which satisfies the conditions required for efficiency by Proposi-

tion 2, without necessarily satisfying the requirement of full contributions. In other words,

this is a binary indicator taking the value 1 if the observed network structure is theoretically

capable of supporting efficient outcomes, and takes the value 0 otherwise. Because the ver-

sion of the game we implemented was purely congestive, an efficient structure is one in which



16 PHILIP SOLIMINE AND LUKE BOOSEY

2
4

6
8

10
12

0 10 20 30

(a) Contributions (in Experimental Currency
Units)

.8
1

1.
2

1.
4

1.
6

1.
8

0 10 20 30

(b) Links

0
.5

1
1.

5
2

0 10 20 30

(c) Isolated Nodes

1
2

3
4

5

0 10 20 30

(d) Individual Costs

0
.0

2
.0

4
.0

6
.0

8

0 10 20 30

(e) Reciprocity

.3
.4

.5
.6

.7

0 10 20 30

(f) Centralization

0
.0

2
.0

4
.0

6
.0

8
R

ec
ip

ro
ci

ty

0 10 20 30
Period

Baseline Treatment

Figure 1. Dynamics of key outcomes



STRATEGIC FORMATION OF COLLABORATIVE NETWORKS 17

there are no “isolated” players who do not form any outgoing links. Figure 1c shows how

the number of isolated players changes over time. As shown in the figure and estimates, the

treatment has an immediate impact in supporting efficient structure. This is evidenced by

a large downward jump in the number of isolated players at the time of intervention—and

correspondingly, a significant positive effect of Treatment on Efficient Structure in column

(3). The likelihood of an isolated node, however, continues to increase over time after the

intervention; and similar to the average degree (number of links), its growth appears to

accelerate. This indicates that degree reductions are not coming exclusively from highly

connected players, which in turn impacts the structural ability of the social system to reach

efficient outcomes.

Result 2. The information treatment has a significant positive impact on the formation of

efficient network structure, by reducing the prevalence of isolated nodes.

4.3. Individual Costs. Contribution decisions and link decisions in isolation may not cap-

ture the true dynamic of behavior. This is because both variables together determine the

cost of sharing – the marginal return of a player’s contribution in this purely congestive game

decreases as they share with more other players. For each observed action, we compute the

direct cost to the sharing individual as (1−mi(Ai))ci. The dynamics of these individual costs

are illustrated in Figure 1d. Due to the decreasing trend in both contributions and linking,

costs follow a downward trend. Treatment sessions see a large fixed jump in individual costs,

and like contributions, the differential effect is not significantly different than zero, indicating

that costs continue to decrease at the same rate as they did before the intervention, albeit

from a significantly higher starting point.

Result 3. Individual costs of sharing are significantly higher in the treatment condition than

in the baseline, although they exhibit a similar downward trend over time in both conditions.

4.4. Reciprocity. A commonly cited behavioral driver of sharing behavior in similar envi-

ronments, and a natural candidate for behavioral preferences, is reciprocity (e.g. Fehr et al.,

1997; Fehr and Gächter, 1998). Our main hypothesis is that individuals in the treatment

condition can use their new information to coordinate with other players who are sharing

with them. This type of reciprocity would make contribution decisions locally complemen-

tary. Thus, a natural measure for such reciprocity is the product of incoming and outgoing

benefit flows from each player. We compute this measure for each network cross-section as∑n
i=1

∑n
j=1,j 6=iAijAjimi(Ai)mj(Aj)cicj. This measure exhibits a negative trend in the base-

line sessions as players fail to successfully coordinate on reciprocal outcomes in the absence

of information. The information intervention has a positive effect both immediately and

differentially. In the treatment condition, reciprocity displays a large positive level effect
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Table 1. Treatment effects on key outcomes

(1) (2) (3) (4) (5) (6)
Contributions Links Efficient structure Costs Reciprocity Centralization

Period -0.0319 -0.0253 -0.0105 -0.0106 -0.000667 0.00640
(0.00455) (0.0118) (0.00295) (0.00212) (0.000160) (0.00100)

Treatment 0.783 1.668 0.375 0.353 0.0252 -0.124
(0.0900) (0.252) (0.0593) (0.0446) (0.00482) (0.0173)

T × Period 0.0108 -0.0644 -0.0147 7.58×10−6 0.00202 -0.00243
(0.0101) (0.0274) (0.00436) (0.00577) (0.000805) (0.00150)

Group FE Yes Yes Yes Yes Yes Yes

N 1380 1380 1380 1380 1380 1362

Standard errors in parentheses, clustered for 46 groups

and switches from following a downward to an upward trend. These trends are apparent in

Figure 1e and supported by the coefficient estimates in column (5) of Table 1. The upward

trend in reciprocity after the treatment intervention indicates that the downward trending

individual costs in treatment sessions can be explained primarily by players progressively

pruning unreciprocated links. It also suggests that, even using information only from the

past, players can succeed in coordinating on stable concurrently reciprocated links.

Result 4. Reciprocity is significantly higher in the treatment condition than in the baseline

condition. Moreover, it increases over time in the treatment, while it decreases over time in

the baseline.

4.5. Centralization. Finally in Figure 1f and column (6) of Table 1, we estimate the impact

of the treatment on (de)centralization. To measure centralization, we use the Herfindahl-

Hirschman index (HHI), which is computed as
∑n

i=1

(
1.6∗ci∑n
i=1 1.6∗ci

)2

(restricting focus to situ-

ations in which there is at least one player who is sharing). We observe that centralization

tends to increase over time, as a small set of players tend to emerge who end up gener-

ating most of the efficiency gains for the group. The treatment has an immediate impact

in encouraging decentralized networks, characterized by a more balanced profile of actively

sharing players. Point estimates also suggest a differential impact of the treatment, in that

its tendency is to not increase as quickly in treatment sessions as in the baseline. However,

our estimate of this effect is not quite significant at the 10% level, with a p-value of 0.112.

Result 5. In the treatment condition, we observe more decentralized networks—exhibiting a

more balanced profile of contributors—than in the baseline condition.

Taken together, these reduced-form results suggest that subjects are highly effective at

using the specific information provided in the treatment condition to coordinate on more
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efficient collaboration networks. To further investigate the driving forces behind these treat-

ment effects, we adopt a structural approach. In the next section, we introduce our structural

framework and implement panel structural estimators of network formation in order to better

understand the underlying behavioral traits that generate our reduced-form results.

5. Structural Estimation

5.1. Structural Model. We use network formation econometrics to structurally model the

environment and investigate the root causes of the behavioral changes observed between

information environments. When incorporating both prosociality and unobserved decision

factors, players make decisions based on the following evolutionary random utility model:

(7) E [Ui(At, ct|θ)|Ωit] = θ1 (πi(At, ct)− κi(A−i, c−i)) + E [βi(A, c|θ)|Ωit] + εit

where Ωit is used to denote the information available to player i at time t. Here, utility

is linearly decomposed into three separate forces – a weighting of preference for monetary

earnings πi, a behavioral term βi describing social preferences, and a structural error term

εit which is i.i.d. across link structure alternatives and time. The structural shock εit

represents alternative decision factors, observed by the decision maker but unobserved by

the econometrician.

Each player then chooses their strategy to maximize this expected utility, so that:

(8) Ei [Ui(Ai, ci|θ)|Ωit] ≥ Ei [Ui(Bi, di|θ)|Ωit] ∀(Bi, di) ∈ {0, 1}n−1 × [0, ω]

Using a model based on beliefs allows us to estimate individual strategic evolution, while

avoiding the bias that arises as a result of the simultaneous nature of decision making in

this setting. This is enabled by our panel of small networks—the rare but ideal setting

in which to study network formation.3 Individuals form expectations over the incoming

value that will be sent to them from each other player, conditional on the local information

that they are given. We denote the information available to the player in time period t

as Ωt, representing a set of observations of previous behavior upon which players can form

reasonable expectations about their neighbors’ future actions.

We can also relax the usual assumption that players move individually, which is common in

the cross-sectional and large network estimators (Mele, 2017; Badev, 2021). This assumption

is typically used to ensure the convergence of logit-response dynamics to a steady state

distribution (Foster and Young, 1990; Alós-Ferrer and Netzer, 2010) from which parameters

are then estimated. Observing a panel of linking decisions by a subset of nodes, set in small

networks, allows us to directly (and tractably) estimate utility parameters from the evolution

3This is as opposed to the potential games approach which uses a single large cross-section and estimates
parameters from the stationary distribution, given some assumptions on the symmetry of preferences, and
the assumption of nonzero meeting probabilities for all dyads.
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of gameplay. While the assumption of players using logit best-response is somewhat strict, it

is a substantial relaxation of the assumptions used in cross-sectional estimators. Specifically,

we no longer need to make assumptions regarding the meeting process for individual revisions.

At time t, some (known) subset of nodes are selected to update their linking strategy.

We place no restrictions on who or how many are chosen for revision. The nodes that are

selected have the opportunity to change their link selection and contribution. They select

the combination link set and contribution which maximize their expected utility, including

the preference shock which is subject to the following assumption:

Assumption 2. The structural preference shock εit is i.i.d. Extreme Value type 1.

This allows us to estimate agents’ best responses from variations of the multinomial logit:

(9) fi(Ai, ci|Ωit, θ) =
exp(φi(Ai, ci|Ωit, θ))∫ ωi

0

∑
Gi∈{0,1}n−1 exp(φi(Gi, δi|Ωit, θ))dδ

Using this logit best-response process, the probability of observing network A and contri-

bution profile c in period t is:

(10) f(A, c|Ωt, θ) =
n∏
i=1

fi(Ai, ci|Ωit, θ)

5.2. Methodology. We observe a panel of N groups over T time periods. We denote the

network from group k in period t as Akt . The resulting log-likelihood function is:

(11) `(θ) =
T∑
t=2

N∑
k=1

n∑
i=1

ln
(
fi(A

k
it, c

k
it|Ωk

it, θ)
)

=
T∑
t=2

N∑
k=1

n∑
i=1

φi(A
k
it, c

k
it|Ωk

it, θ)− ln
(
Zit(θ,Ω

k
it)
)

where Zit(θ,Ω
k
it) is the partition function from the denominator of the density (9),

(12) Zit(θ,Ω
k
it) =

∫ ωi

0

∑
Gi∈{0,1}n−1

exp(φi(Gi, δi|Ωk
it, θ))dδ.

The MLE is then defined as the vector of parameters that maximizes this objective,

(13) θ̂ = arg max
θ∈Θ

`(θ).

The graphs in Figure 2 highlight the computational benefits associated with panel estima-

tors of network formation compared to a pooled cross-sectional estimator. In these graphs,

nodes represent random variables; a circle represents a single variable (the contribution of

Player i), and a square represents a dense subgraph in which all of the variables contained

in the labeled set are completely connected. A link indicates statistical dependence of the

receiving variable on the linking variable. A link to or from a square node indicates depen-

dence between all elements in the union of the sets, and bidirectional links are highlighted in

dark red, while dashed grey links are not bidirectional. A light blue node is observed by the
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Figure 2. Dependence graphs for a two-player game.

decision maker, and thus can be conditioned on in estimation, while all interconnected dark

red nodes must be treated as a single outcome variable. Since each player has n−1 potential

links in the network, each set Ati contains n−1 interdependent random variables. Panel esti-

mation improves computation time by conditioning on each player’s available information to

sever concurrent interdependence between links and contributions across players. This works

by essentially performing n simultaneous independent multinomial logit estimations across

n variables (each potential link plus a contribution level), as opposed to a single multinomial

logit over n2 outcomes, saving a total of 2(n2) − 2n operations when the support of ci is

binary. For perspective, in a network of size n = 10, panel estimation reduces the number of

required floating point operations from 1.27×1030 to just 1,024 operations per cross-section.

5.3. Inference. We also estimate uncertainty in these environments by computing asymp-

totic standard errors using a partial likelihood approach, to account for possible misspecifica-

tion of the joint density.4 The partial likelihood approach assumes only that the conditional

distribution is properly specified by f , and focuses on a partial likelihood function ` which

is defined as

(14) `pk(θ) =
T∑
t=1

n∑
i=1

log ft(A
k
it, c

k
it | Ωk

it, θ)

4For example, misspecification may arise due to serial correlation in the error term within a group. See
chapter 13 of Wooldridge (2010) for details of this approach.
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Point estimates from the MLE and PMLE are identical, but the asymptotic variance of the

partial likelihood estimator adjusts for clustering by group.

That is, in the limit as N → ∞, the distribution of θ̂PMLE is determined by the central

limit theorem

(15)
√
N
(
θ̂PMLE − θ0

)
∼ N

(
0, A−1

0 B0A
−1
0

)
where A0 = −E [∇2

θ`
p
k(θ0)] and B0 = E

[
∇θ`

p
k(θ0) (∇θ`

p
k(θ0))>

]
. The key difference between

the PMLE and MLE standard error formulas lies in the summation over t within the function

`pk, which must be accounted for in computation of the expected score and Hessian. In

this exponential family, the scores can be expressed as the sufficient statistics minus their

expected values under θ. Typically in a large network this would need to be estimated using

Monte-Carlo methods, but conveniently, because the limited group size allows us to directly

compute the normalizing constant for each fit, we can efficiently compute the scores directly

during the calculation of the normalizing constant. Crucially, the summation across time

periods must take place before the outer product in an estimate of the Fischer information

matrix.

Following Wooldridge (2010), we estimate A0 and B0 as

Â0 = − 1

N

T∑
t=1

N∑
k=1

n∑
i=1

∇θ`
k
it(θ)

(
∇θ`

k
it(θ)

)>
(16)

B̂0 = Â0 +
1

N

N∑
k=1

T∑
t=1

∑
r 6=t

n∑
i=1

∇θ`
k
it(θ)

(
∇θ`

k
ir(θ)

)>
(17)

where the additional cross products in B̂0 compensate for potential serial correlation. Finally,

the asymptotic variance matrix is estimated as 1
N
Â−1

0 B̂0Â
−1
0 .

Because of the reasonably limited size of our dataset, we also construct p-values through

a fully nonparametric bootstrap based on resampling of full group sequences. The non-

parametric clustered bootstrap approach works as its name suggests – sequences are drawn

from the sample (with replacement) to form a new sample, matching the total number of

observations and proportion of observations of treatment groups. In order to ensure proper

clustering, it is crucial that each sequence of networks from one group is treated as a single

observation. The estimation routine is then run again on this new dataset, and the estimates

are stored. Standard errors are obtained as the standard deviation of estimates made by

repeating this process many times. This approach leverages the argument that drawing from

the observed sequences with replacement is the best approximation we can make to drawing

from the true distribution of sequences without making any distributional assumptions. As

such, the nonparametric bootstrap should generally provide a more conservative estimate of

the true variability of the estimators.
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Further, we do not expect the MLE to reach its asymptotic distribution within a limited

sample size. Therefore, we make no assumptions on the normality of the estimator evalu-

ated on our sample, which would be implicit in using the standard error as our metric of

uncertainty and suggesting that it would imply t-statistics or p-values. Instead, we present

nonparametric estimates of the p-values which are computed directly from the bootstrap

results as the empirical probability that the estimator takes the opposite sign to what was

estimated on the full sample.

5.4. Estimation Results. We turn next to the structural estimation of the discrete choice

framework presented above. We first estimate the following simple specification of behavior,

in order to understand how the treatment changes incentives by directing attention toward

direct and generalized reciprocity, (as in Fehr et al. (1997); Fehr and Gächter (1998)). We

also incorporate some persistence parameters to account for dynamic effects or inertia in

decisions:

βit(A, c|θ) = θ2Tκi(A−i, c−i)︸ ︷︷ ︸
Change in altruism

+
θ5T

n− 1

n∑
j=1,j 6=i

Aij,tAji,t−1mi(Ai,t)mj(Aj,t−1)ci,tcj,t−1︸ ︷︷ ︸
Reciprocity

+
θ3 + θ4T

(n− 1)2

n∑
j=1,j 6=i

Aij,tmi(Ai,t)ci,t

n∑
k=1,k 6=i

Aki,t−1mi(Ak,t−1)ck,t−1︸ ︷︷ ︸
Generalized reciprocity

+ θ6(ci,t − ci,t−1)2︸ ︷︷ ︸
Contribution inertia

+ θ7

n∑
j=1,j 6=i

|Aij,t − Aij,t−1|︸ ︷︷ ︸
Link inertia

We estimate this model using the data from our laboratory experiment, and present the

results of these estimations in Table 2.

We focus on the estimates of five primary parameters.5 The first parameter, θ1, captures

how players weight the cost of sharing. Not surprisingly, all estimates of this parameter are

positive. This means that players follow their incentives and that, holding all else constant,

they are more likely to choose actions that are less costly.

The other four main coefficients concern the behavioral component to payoffs. The positive

sign of θ2, which is the coefficient on the interaction between contribution cost and the

treatment, indicates that having access to this new information makes players more careful

about who they share with. We can interpret this coefficient as a reduction in altruism due

to the treatment, since it indicates a tendency of players to focus more on their individual

costs of sharing.

5Both of the inertia terms are significantly negative, indicating a tendency of players to bias their actions
toward those that they took in the previous round.
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Table 2. Structural parameter estimates

MLE
Estimate SE Bootstrap p-val

(θ1) Contribution costs 9.355 0.107 0.000

(θ2) Treatment × 2.629 0.224 0.214
Contribution costs

(θ3) Generalized reciprocity 7.011 0.090 0.005

(θ4) Treatment × -9.177 0.279 0.038
Generalized reciprocity

(θ5) Treatment × 26.155 0.382 0.000
Reciprocity

(θ6) Contribution inertia -5.082 0.038 0.000

(θ7) Link inertia -0.542 0.009 0.000

Number of groups 46 46 46
Number of treatment groups 28 28 28
Number of time periods 30 30 30
Bootstrap samples 1000
Asymptotic standard errors clustered by group

The coefficients θ3 and θ4 are related to generalized reciprocity. The interpretation of

generalized reciprocity is that it measures the tendency of players to share more when they

receive more overall benefits as a result of their group’s sharing in the previous round, without

regard to who exactly shared with them. The estimate of θ3 is positive indicating that in the

baseline sessions, generalized reciprocity drives some of the observed sharing behavior. The

negative coefficient on the treatment effect (θ4), however, drives behavior in the opposite

direction. Because the sum of effects is significantly negative, this suggests a strict tradeoff

between generalized and direct reciprocity, and highlights how the information provided in

the treatment helps to focus reciprocity toward active collaborators.

The final coefficient of primary interest (θ5) is on the interaction between the treatment

effect and our measure of direct reciprocity. The large magnitude and significance of this

estimate indicate that direct reciprocity is indeed a strong driver of the more successful

collaboration observed in treatment groups.

5.5. Individual heterogeneity. After the main parts of the experiment, subjects were

asked a series of survey questions to elicit measures of their individual characteristics. All

of these questions were aimed at eliciting a subject’s heterogeneous preferences toward trust

and reciprocity. The full set of survey questions are reproduced in Appendix B. In order

to distill answers from these questions into a reasonable number of attributes to describe
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Figure 3. Scree plot of the eigenvalues determining reciprocity char-
acteristics

reciprocity and trust, we performed a principal components analysis and selected the top

two principal components as representative characteristics of reciprocity, along with the first

principal component of the trust questionnaire responses to represent trust. The decision

to select two components for reciprocity was determined by referring to a Scree plot of the

singular values shown in Figure 3. From this, we can see that the first two components of

the reciprocity questionnaire describe more than 70% of the variation in survey responses.

The first principal component, referred to as overall reciprocity, captures both positive and

negative reciprocity, while the second principal component, referred to as positive reciprocity,

favors positive reciprocity and eschews negative reciprocity.

We estimate the same model as above with additional interaction terms between the

main parameters of interest and the subject’s individual characteristics (the trust attribute,

overall reciprocity attribute, and positive reciprocity attribute). The results are reported in

Table 3. We find strong evidence that individually heterogeneous preferences drive differences

in behavior. Importantly, the point estimates for θ1–θ7 are robust to the introduction of these

heterogeneous individual characteristics.

Because there are only three trust questions, the first principal component summarizes

most of the information from the trust questionnaire. It places positive weight on the question

that involves trust and negative weights on two questions that suggest mistrust. Perhaps

surprisingly, this measure of trust is associated with a positive interaction on contribution

costs in the baseline, which indicates that individuals who score highly on trust are less

altruistic and more careful about where they direct effort in the baseline. This agrees with the
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Table 3. Structural parameter estimates with heterogeneity

MLE
Estimate SE Bootstrap p-val

Contribution costs 10.471 0.110 0.000
T × Contribution costs 2.480 0.229 0.241
Generalized reciprocity 9.385 0.084 0.003
T × Generalized reciprocity -13.033 0.305 0.002
T × Reciprocity 25.039 0.415 0.000
Contribution inertia -5.626 0.037 0.000
Link inertia -0.516 0.008 0.000

Individual Heterogeneity

Trust × Contribution costs 1.951 0.055 0.011
Overall reciprocity × Contribution costs -2.966 0.066 0.051
Positive reciprocity × Contribution costs -6.916 0.117 0.002

Trust × T × Contribution costs -1.951 0.123 0.091
Overall reciprocity × T × Contribution costs 4.413 0.143 0.052
Positive reciprocity × T × Contribution costs 4.266 0.131 0.068

Trust × Generalized reciprocity 2.128 0.048 0.099
Overall reciprocity × Generalized reciprocity 4.286 0.064 0.065
Positive reciprocity × Generalized reciprocity -8.645 0.130 0.021

Trust × T × Generalized reciprocity 0.347 0.277 0.428
Overall reciprocity × T × Generalized reciprocity -6.300 0.330 0.052
Positive reciprocity × T × Generalized reciprocity 9.356 0.314 0.121

Trust × T × Reciprocity 3.151 0.392 0.167
Overall reciprocity × T × Reciprocity 3.289 0.373 0.149
Positive reciprocity × T × Reciprocity -2.345 0.382 0.302

Number of groups 46
Number of treatment groups 28
Number of time periods 30
Number of bootstrap samples 1000

Asymptotic standard errors and bootstrap p-values clustered for 46 groups.

results of Glaeser et al. (2000), who suggest that such trust questionnaires predict trustworthy

behavior but do not necessarily predict trusting behavior. Further in line with these results

is a strong positive interaction of the trust characteristic with generalized reciprocity in the

baseline. This suggests that these individuals are trustworthy in that they respond more to

sharing by others by increasing their own effort. However, they are less likely to share blindly

and trust that others will reciprocate. In the treatment, estimates of the effect of trust are

less precisely estimated but suggest a reversal of this phenomenon; they trust that others

will reciprocate when they know that others will be aware of their sharing behavior. This is

captured by the negative estimate of the interaction between trust, the treatment indicator,

and contribution costs, together with the positive estimate on the interaction between trust,

the treatment indicator, and direct reciprocity. This sheds more light on information as a
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mechanism driving the mixed results regarding trust and sharing behavior in public goods

games in previous work (Anderson et al., 2004).

The characteristic that we describe as overall reciprocity consists of positive weights on the

answers to all of the questions in the reciprocity questionaire. This includes both questions

about positive reciprocity (e.g. “If someone does me a favor, I am prepared to return it”), as

well as negative reciprocity (“If someone puts me in a difficult position, I will do the same to

them”). Estimates of the interaction between this characteristic and the behavioral utility

terms suggests that these individuals are more altruistic in the baseline and behave more in

line with generalized reciprocity. At the onset of the treatment, they also shift more weight

toward direct reciprocity. However, this shift toward direct reciprocity is potentially offset by

a decrease in altruism (measured by additional weight placed on the costs of contributing)

coupled with a strong decrease in generalized reciprocity. This suggests that individuals

who have a high overall reciprocity attribute use new information to discriminate between

collaborators as a mechanism for punishment.

On the other hand, the second component of reciprocity places positive weight on questions

involving positive reciprocity and negative weight on questions involving negative reciprocity

or punishment. Individuals who align with this characteristic place much lower weight on

the actual cost of contributing, suggesting some altruism. While there is some tradeoff in

the treatment, the sign of the aggregate interaction term remains negative in the treatment

suggesting that these players are still behaving more altruistically than average. Perhaps sur-

prisingly, there is a strong negative coefficient on the interaction between positive reciprocity

and generalized reciprocity in the baseline. These together suggest that their increased shar-

ing is not conditional on having received more benefits from their group, possibly representing

a tendency to share in anticipation that others will behave reciprocally. This interpretation

is reinforced by a large positive effect of the treatment on generalized reciprocity for this

group, offset by a small decrease in direct reciprocity. In other words, these individuals

reciprocate by sharing with the entire group, and trusting in the reciprocity of others, rather

than by using new information as a tool for punishment.

5.6. Simulations and goodness of fit. To address concerns about how well the structural

model fits the data, and to enable our counterfactual investigations involving behavioral

interventions, we start by conducting some simulations. The simulations are conducted semi-

parametrically, by bootstrap sampling initial conditions with replacement and using them as

the starting point for a sequence of network and contribution profiles, drawn with Markov-

Chain Monte Carlo (MCMC) sampling. Although a full MCMC chain would be slow to mix,

we can exploit conditional independence relationships, due to the panel structure, to build a

partial Gibbs sampler that draws from each player’s next strategies individually—treating a
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tuple (Ai, ci) individually using a combination of MCMC and rejection sampling. Whenever

possible, we avoid distributional assumptions and opt for semi-parametric procedures.

The partial Gibbs MCMC sampler works as follows; first we draw a starting panel from

an initial distribution f0(A, c). For this we resample from the starting panels observed

in the data either in the treatment or control. Next, we iteratively draw each player’s

next strategy using a standard Metropolis-Hastings sampler. This leverages the fact that

players’ strategies are independent conditional on the previously observed network. Using a

proposal distribution (Ami c
m
i ) ∼ gi(Ai, ci), the acceptance ratio for sample m is determined

by α =
exp(φi(Am

i ,c
m
i |Ωit,θ))

exp(φi(Am−1
i ,cm−1

i |Ωit,θ))
gi(A

m−1
i ,cm−1

i )

gi(Am
i ,c

m
i )

, and sample m is accepted with probability equal

to min{1, α}. Due to the standard theory of Metropolis-Hastings sampling, we then have

limm→∞(Ami , c
m
i ) ∼ fi(A

m
i , c

m
i | Ωk

it, θ). In practice, we choose a large number M and choose

the action (AMi , c
M
i ) to be included in the next network panel.6 This is repeated for each

of the n players, and the resulting panel (AM , cM) is then taken to be the next step in

the sequence, and this process is then repeated for each of the T time periods to generate

a single full sequence. This partial Gibbs sampler (that is, drawing each player’s strategy

variables separately) greatly improves the number of accepted samples, and thus the speed of

mixture, by dramatically decreasing the magnitude of the sample space and thus increasing

acceptance probabilities.

In practice, because we want the proposal distribution to be close to the true distribution,

we draw from a proposal distribution gi that is constructed as follows; the empirical distri-

bution of contributions in the baseline and treatment sessions along with a random binary

vector of links with equal probability on each feasible configuration. That is,

(18) gi(A
m
i , c

m
i ) =


1

2n−1−1
1

nNT

∑T
t=1

∑N
k=1

∑n
i=1 I[ckit = cmi ] if cmi 6= 0 and Ami 6= 0

1
nNT

∑T
t=1

∑N
k=1

∑n
i=1 I[ckit = 0] if cmi = 0 and Ami = 0

0 otherwise

After drawing a sample of 1000 simulated groups, 500 in the treatment and 500 in the

control, we evaluate the fit of the model by replicating our reduced form estimations from

Table 1. The results of this replication for the MLE estimates are shown in Tables 4 and

5. These evaluations of the goodness-of-fit of the structural model are entirely promising –

point estimates match up nearly perfectly in sign and closely in magnitude to the reduced

form static and dynamic treatment effects. A further look at the simulations in Figures

4, 5, 6 reinforces this finding. In these panels, the cross-group averages of 10,000 simulated

groups for each condition are shown as pale lines overlaying the dashed lines (which show the

patterns from the original data.) These figures highlight the ability of this structural model

to reproduce observed patterns of behavior on all of our key metrics. Crucially, because the

6For this paper, we used a sample length of 10,000 in between accepted actions.
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Table 4. Reduced form replication under MLE estimates

(1) (2) (3) (4) (5) (6)
Efficient structure Contributions Links Costs Reciprocity Centralization

Period -0.00434 -0.00896 -0.00297 -0.00193 -0.000319 0.00102
(0.000526) (0.000746) (0.00211) (0.000196) (0.0000287) (0.000191)

Treatment 0.459 1.113 1.969 0.342 0.0391 -0.110
(0.0363) (0.0554) (0.126) (0.0155) (0.00567) (0.00923)

T × Period -0.00803 -0.0113 -0.0467 -0.00470 0.000195 0.00175
(0.00164) (0.00266) (0.00583) (0.000741) (0.000253) (0.000438)

Group FE Yes Yes Yes Yes Yes Yes

N 30000 30000 30000 30000 30000 30000

Standard errors in parentheses, clustered for 1000 groups

Table 5. Reduced form replication with estimates with heterogeneity

(1) (2) (3) (4) (5) (6)
Efficient structure Contributions Links Costs Reciprocity Centralization

Period -0.00217 -0.00422 0.00364 -0.000567 -0.000156 0.000735
(0.000581) (0.000893) (0.00213) (0.000250) (0.0000389) (0.000181)

Treatment 0.449 0.876 1.702 0.274 0.0379 -0.0911
(0.0340) (0.0536) (0.123) (0.0156) (0.00576) (0.00836)

T × Period -0.00810 -0.000625 -0.0412 -0.00152 0.000845 0.00104
(0.00163) (0.00271) (0.00587) (0.000779) (0.000246) (0.000406)

Group FE Yes Yes Yes Yes Yes Yes

N 30000 30000 30000 30000 30000 30000

Standard errors in parentheses, clustered for 1000 groups

vast majority of these metrics (with the sole exception of individual costs) are not directly fit

by the structural model, this provides some confidence that the model is accurately capturing

key features of subject behavior.

5.7. Counterfactual behavioral interventions. In our estimated model, it is clear that

behavioral heterogeneity features (trust, overall reciprocity, positive reciprocity) drive changes

in collaboration patterns across the experiments. In a set of counterfactual simulations, we

examine the effects of uniform upward shifts in each one of these characteristics across the

population. These can be described as “benign behavioral interventions”, because they

mimic the effects of priming players toward a certain social preference but without directly

altering payoffs or the information structure. We use these counterfactuals to reason about

which behavioral traits would be the most valuable to promote collaboration.
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From a platform design perspective, we can think of these as policy counterfactuals to

investigate marketing strategies that would emphasize certain behavioral traits. More gen-

erally, due to the complex interactions between these characteristics and the different forms

of altruism and reciprocity, it is useful to know which behavioral traits are the most valuable

in promoting collaboration. The results, shown in Figures 4, 5, and 6, highlight the effects of

these counterfactual adjustments. In each figure, we show the average of 10,000 simulations

in the counterfactual regime, shown as the darker lines, juxtaposed against 10,000 simula-

tions from the standard model as well as the values actually observed in the data (shown as

a dashed line).

Figure 4 shows the effect of a one-standard deviation increase in the trust component,

applied uniformly across the population. As the figure shows, this intervention improves

outcomes along all measures, including contributions, links, reciprocity, and centralization,

in the treatment condition. In the baseline however, the effect is moderately reversed. This

is explained by the reduction in altruism and overall willingness to internalize sharing costs

as well as an increase in free-riding to take advantage of those who are more trusting.

The next set of simulations, shown in Figure 5, shows the effects of a uniform increase in

overall reciprocity. From this figure, we can see that our measure of overall reciprocity is

essentially capturing the opposite effect as trust; in the baseline overall reciprocity creates

substantial increases in linking and contributions. In the treatment, however, when subjects

are given access to information that can be used as a tool for punishment, observed networks

are actually less efficient than before the change.

Finally, Figure 6 shows the effects of an increase in positive reciprocity, and thus a shift

away from a punishment mindset and toward a focus on gains from mutual effort and collab-

oration. As we can see, shifting players toward positive reciprocity has some of the largest

effects in the baseline, with large increases in linking behavior and increases in contributions

that are similar to those from a shift in overall reciprocity. Unlike the other examples, how-

ever, the increases from positive reciprocity are consistent across both the baseline and the

treatment, generating substantial efficiency gains in both settings. From this perspective, it

seems that positive reciprocity is the most consistently valuable of these social preferences

if the goal is to encourage efficient collaboration.

6. Conclusion

In this paper, we have developed a model of collaboration as resource sharing on an endoge-

nous network. Unlike previous models of voluntary resource sharing, we allow individuals to

specifically choose the beneficiaries of their externalities. This intuitive extension provides

a convenient generalization of the classical voluntary contributions mechanism, and allows
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Figure 4. Results of counterfactual uniform increases to trust
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for flexible specification of group size effects in a way designed to capture realistic incentive

problems.

We characterized simple theoretical and empirical frameworks for the voluntary sharing

game and used them to estimate social preferences from panels of dynamic network data.

Using data collected in the lab, we examine the impact of different information structures

on sharing and link formation decisions, with a particular focus on the relative importance

of different forms of trust and reciprocity. We find that individuals in these environments

are highly effective at using information to coordinate on more efficient outcomes. While

this form of collaboration is, theoretically, plagued by free-riding incentives, behavioral bi-

ases such as a preference for reciprocity can generate complementarities that help support

nontrivial collaborative outcomes.

When provided with more detailed information, players exhibit a clear preference to target

the positive externalities they generate toward others who have shared with them, reciprocat-

ing directly. Using our structural estimation methods, we characterize the tradeoff between

altruism and different forms of reciprocity. We find that subjects tend to rely heavily on

direct reciprocity when it is available, substituting away from a more generalized version

of reciprocity. We also find that the subjects’ reliance on different types of reciprocity are

correlated strongly with heterogeneous behavioral characteristics created by a feature anal-

ysis of survey questions collected during the experiment. Using the interactions between

these features and the different forms of reciprocity, we simulate counterfactual increases

in different types of social preferences on the platform. The effects of these interventions

vary strongly based on the information environment. Increasing trust can backfire in the

baseline by increasing the incentive to free-ride, and increasing overall reciprocity has the

opposite effect of driving efficiency gains in the baseline but falling short in the treatment

due to increases in punishment behavior. On the other hand, interventions that focus on

pushing players toward positive reciprocity (returns from mutual cooperation) and away

from negative reciprocity (punishment) have a consistent effect of boosting collaboration

and efficiency.

While we have demonstrated the effectiveness of our modeling paradigm and established

proof-of-concept, the real power of our methodology is in its capacity to explain far more

sophisticated patterns of learning and behavior. In particular, using laboratory experiments

to collect small panels of network data opens the door to a new family of statistical tools that

can be used to identify the structure of social preferences, and which have been understudied

due to the massive size of most network data. In this respect, we hope that these findings will

lay the groundwork for future study in a number of possible directions, to better understand

the motivations and patterns of collaboration that guide the formation and evolution of

prosocial behavior in the sharing economy.
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Experimental Instructions

Introduction

Thank you for participating in today’s experiment. I will read through the script so that everyone receives the
same information. Please remain quiet and do not communicate with other participants during the experi-
ment. Raise your hand if you have any questions. Someone will come to you to answer the question privately.

For your participation in today’s experiment, you will receive the show-up fee of $7. In addition, during the
experiment, you will have the opportunity to earn more money. Your additional earnings will depend on the
decisions you make and on the decisions made by other participants. At the end of the experiment, you will
be paid anonymously by check. No other participant will be informed about your payment.

The experiment consists of multiple parts. The instructions for each part will only be distributed and read
after previous parts have been completed.

Part 1

All amounts in this part will be expressed in tokens. At the end of the experiment, your earnings will be
converted to dollars according to the exchange rate, 80 tokens = $1.

This part of the experiment consists of 15 decision rounds. Before the rounds begin, you will be randomly
divided into groups consisting of 4 participants. Each player in your group will be assigned a letter ID (W,
X, Y, or Z). Group members and letter IDs are fixed for the duration of this part.

In each round, you and the other members of your group will each be given 20 tokens. You can divide these
20 tokens between two accounts: Account A and Account B.

Account A. Any tokens you put into Account A will be kept as earnings for the round. Thus, if you put
10 tokens in Account A, your earnings from Account A will be 10 tokens.

Account B. Any tokens you put into Account B generate earnings for you and for any other group mem-
bers of your choosing. Specifically, in addition to dividing your 20 tokens between Account A and Account
B, you must designate, in each round, which of the other group members will receive earnings from your
Account B.

The tokens you put in Account B will be multiplied by a factor of 1.6 and then divided equally between you
and the group members who you designate as recipients.

For example, suppose you designate two other group members as recipients, and put 10 tokens into Ac-
count B. Those 10 tokens will be multiplied by 1.6, so that there are 16 tokens to divide between you and
your designated recipients. In this case, you and the two group members you designated would each receive
5.33 tokens in earnings from your Account B.

For another example, suppose you designated one other group member as a recipient and put 10 tokens
into Account B. As before, those 10 tokens will be multiplied by 1.6, so that there are 16 tokens to divide. In
this case, you and the group member you designated as a recipient would each receive 8 tokens in earnings
from your Account B.

Note that if you do not designate any recipients, then all 20 tokens must be placed into Account
A. Thus, it is not possible for you to put tokens into Account B and receive the multiplied amount entirely
to yourself.
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How do you make your decisions?

A screenshot of the decision screen is shown below. In the top left panel, you can enter the number of tokens
you want to put into Account B. You can enter any integer number of tokens from 0 to 20.

In the right panel, you can designate recipients by clicking on the boxes for the other members of your group.
Your own box is automatically selected and highlighted in gray. To select another player as a recipient, click
on their box and it will be highlighted in blue. If you want to unselect a player, click on the highlighted box
again and it will be unhighlighted.

When you are ready to submit both your designated recipients and your allocation decision, click the “OK”
button.

Your Earnings

In each round, you can collect earnings in three ways.

(1) From your own Account A - any tokens you put in Account A will be paid to you as earnings at the
end of the round

(2) From your own Account B - any earnings generated for you out of your own Account B will be paid
at the end of the round

(3) From the Account B of each player who selected you as one of their designated recipients -
if another player chose you as a designated recipient, you will receive some earnings from their Account
B. How much you earn from them depends on how much they put in their Account B and how many
other recipients they designated.

Example Scenario. Suppose you put 10 tokens into Account A and 10 tokens into Account B, while you
selected one other player in your group to be a designated recipient. In addition, suppose that two of the
other players (say, X and Y) selected you as one of their designated recipients. Suppose player X put 20
tokens into his Account B and selected 2 designated recipients (one being you), while player Y put 10 tokens
into her Account B and selected only 1 designated recipient (you). How would your earnings be calculated
in this scenario?



• First, you would receive 10 tokens in earnings from your Account A.

• Second, both you and your one designated recipient would receive 8 tokens in earnings from your
Account B, since the 10 tokens you allocated will be multiplied by 1.6 and divided between the two of
you.

• Third, you would receive some earnings from player X and player Y, each of whom selected you as
a designated recipient. From Player X, your earnings will be equal to (20 × 1.6)/3 = 10.66 tokens,
since the multiplied amount in his Account B is divided between him and his two designated recipients.
From Player Y, your earnings will be equal to (10 × 1.6)/2 = 8 tokens, since the multiplied amount
in her Account B is divided between her and her one designated recipient (which is you).

Adding these together, your earnings for the round in this scenario would be

(10 + 8 + 10.66 + 8) = 36.66 tokens.

At the end of the experiment, your total earnings from Part 1 will be the sum of your earnings from all 15
rounds.

Feedback

At the end of each round, you will see the following information:

• The number of tokens you allocated to Account B

• A list of the players you selected as designated recipients

• Your earnings from Account A

• The earnings received by you and any designated recipients you selected from your allocation to Account
B

• Your total earnings for the round, which includes any earnings you received as a designated recipient
for other players’ Account B allocations.

In the bottom panel on the left of the decision screen, the history table shows all of your decisions (allocation
and designated recipients) and payoffs from previous rounds.



Part 2

This part of the experiment is almost identical to the previous part. As in Part 1, all amounts are expressed
in tokens and your earnings will be converted at the end of the experiment according to the exchange rate,
80 tokens = $1.

Part 2 also consists of 15 decision rounds. Your group of 4 participants will be the same as in Part 1.
However, before the first round in this part, you will be randomly assigned a new letter ID (W, X, Y, or Z).
The new letter IDs will remain fixed for the duration of this part.

The only differences between this part and the previous part relate to the feedback that you will receive. In
this part, at the end of each round, you will see all of the same information as in Part 1. In addition, you will
see a summary of the earnings you received from the Account B of each player who selected
you as a designated recipient. Furthermore, on the decision screen, there will be an additional history
panel that shows you the Account B earnings you received from each player in all previous rounds of Part 2
(this panel will only show up after Round 1 of this part).

At the end of the experiment, your total earnings from Part 2 will be the sum of your earnings from all 15
rounds.



Part 3 (no need to distribute)

This part of the experiment is an individual survey. All of the instructions are provided on the screen. There
are four (4) screens to complete.



Reciprocity Questionnaire 

On a scale from 1 (this statement does not apply to me at all) to 7 (this statement applies to me 
perfectly) please indicate how well you believe the following statements apply to you personally. 

 

1. If someone does me a favor, I am prepared to return it. 
2. If I suffer a serious wrong, I will take revenge as soon as possible, no matter what the cost. 
3. If somebody puts me in a difficult position, I will do the same to them. 
4. I go out of my way to help somebody who has been kind to me before. 
5. If somebody insults or offends me, I will offend or insult them back. 
6. I am ready to undergo personal costs to help somebody who has helped me before. 

 

 

Trust Questionnaire 

Please indicate to what extent you agree or disagree with the following statements. 

1: Strongly disagree, 2: Disagree somewhat, 3: Agree somewhat, 4: Strongly agree 

 

1. In general, one can trust people. 
2. These days you cannot rely on anybody else. 
3. When dealing with strangers, it is better to be careful before you trust them. 
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